mgkit.plots.heatmap module¶
New in version 0.1.14.
Code related to heatmaps.
-
mgkit.plots.heatmap.
baseheatmap
(data, ax, norm=None, cmap=None, xticks=None, yticks=None, fontsize=18, meshopts=None, annot=False, annotopts=None)[source]¶ Changed in version 0.2.3: added annot and annot_args arguments
A basic heatmap using
matplotlib.pyplot.pcolormesh()
. It expect apandas.DataFrame
.Note
Rows a plot bottom to up, while the columns left to right. Change the order of the DataFrame if needed.
- Parameters
data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used
ax – axes to use
norm – if needed,
matplotlib.colors.BoundaryNorm
ormatplotlib.colors.Normalize
can be used to fine tune the colorscmap (None, matplotlib.colors.ListedColormap) – color map to use
xticks (None, dict) – dictionary with additional options to pass to set_xticklabels
yticks (None, dict) – dictionary with additional options to pass to set_yticklabels
fontsize (int) – font size to use for the labels
meshopts (None, dict) – additional options to pass to
matplotlib.pyplot.pcolormesh()
annot (bool) – if True the values of the matrix will be added
annot_args (None, dict) – dictionary with the options for the annotations. The option format is a function that returns the formatted number, defaults to a number with no decimal part
- Returns
the return value of
matplotlib.pyplot.pcolormesh()
- Return type
matplotlib.collections.QuadMesh
-
mgkit.plots.heatmap.
dendrogram
(data, ax, method='complete', orientation='top', use_dist=True, dist_func=<function pdist>)[source]¶ Changed in version 0.1.16: added use_dist and dist_func parameters
Plots a dendrogram of the clustered rows of the given matrix; if the columns are to be clustered, the transposed matrix needs to be passed.
- Parameters
data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used
ax – axes to use
method (str) – clustering method used, internally
scipy.cluster.hierarchy.linkage()
is used.orientation (str) – direction for the plot. top, bottom, left and right are accepted; top will draw the leaves at the bottom.
use_dist (bool) – if True, the function dist_func will be applied to data to get a distance matrix
dist_func (func) – distance function to be used
- Returns
The dendrogram plotted, as returned by
scipy.cluster.hierarchy.dendrogram()
-
mgkit.plots.heatmap.
grouped_spine
(groups, labels, ax, which='y', spine='right', spine_opts=None, start=0)[source]¶ Changed in version 0.2.0: added va, ha keys to spine_opts, changed the label positioning
Changed in version 0.2.5: added start parameter
Changes the spine of an heatmap axis given the groups of labels.
Note
It should work for any plot, but was not tested
- Parameters
groups (iterable) – a nested list where each is element is a list containing the labels that belong to that group.
labels (iterable) – an iterable with the labels of the groups. Needs to be in the same order as groups
ax – axis to use (same as heatmap)
which (str) – to specify the axis, either x or y
spine (str) – position of the spine. if which is x accepted values are top and bottom, if which is y left and right are accepted
spine_opts (dict) – additional options to pass to the spine class
start (int) – the start coordinate for the grouped spine. Defaults to 0
-
mgkit.plots.heatmap.
heatmap_clustered
(data, figsize=10, 5, cmap=None, norm=None)[source]¶ Plots a heatmap clustered on both rows and columns.
- Parameters
data (pandas.DataFrame) – matrix to plot. The DataFrame labels are used
figsize (tuple) – passed to
mgkit.plots.utils.get_grid_figure()
cmap (None, matplotlib.colors.ListedColormap) – color map to use
norm – if needed,
matplotlib.colors.BoundaryNorm
ormatplotlib.colors.Normalize
can be used to fine tune the colors